Software Defined
Radio

GNU Radio and the §§3
USRP |®

Overview

e What is Software Defined Radio?

e Advantages of Software Defined Radio
e Traditional versus SDR Receivers

e SDR and the USRP

e Using GNU Radio

Introduction

e What is Software Defined Radio (SDR)?
Getting code as close to the antenna as possible
Replacing hardware with software for
modulation/demodulation

e Advantages:

Makes communications systems reconfigurable
(adapting to new standards)

Flexible (universal software device - not special
purpose)

Filters/Other Hardware

Cognitive Radio

Traditional Receiver

(Lol
RF | OfLO+fc IF Demod- m
4« | Amplifier| « 4 |Amplifier | * | ulator | *
T fLO 10 KH;
2
10 KHz LOC?I - f (KHz)
b e Oscillator 5
[0kt f (KHz)
f (KHz) 455
530 ggo 1700 o
10KHz o5 (KHz)
<

4

- fL0=1435 KHz
T70d (KH2)

530 9go

Traditional vs. SDR Receiver | 3¢

Receiver Front End

TraditionaY, RF ® IF | [Demod-| |

/ Hardware Amplifier Amplifier | { | ulator Dj
Receiver LocaIT 5

Oscillator

Current {
SDR Receiver Front End |

Receiver

Future

SDR {
Receiver ? ADC m

SDR Receiver Using the USRP | :

Daughterboard Motherboard

Receiver
ADC FPGA usB I
Front End Controller '

A A
similar to traditional Di/?ﬂ?(a“gn’ GNU Radio
front end with fie = 0 ’ software

‘ Interface to PC ‘

USRP: Universal Software Radio Peripheral

Quadrature Signal
Representation

The received signal, S(t), may be represented as follows:

S(t)=1(t)cos(2m f.t)+ Q(t)sin(2r f.1) R
f, = carrier frequency
446 1 (MHz)

Ity = in-phase component Contain amplitude
] and phase

information of

Q(t) = quadrature component
baseband signal

*GNU Radio software uses | and Q components to
demodulate signals
*USRP front end translates the signal to zero frequency

and extracts | and Q !

Extracting I(t) from S

S(t)=1(t)cos(2r f.t)+ O(t)sin(2x f.t)
Multiplying both sides by cos(21ft):
S(t)cos2rmf.t) = I(t)cosz(Zn'f(,t) +Q(t)sin(2r f,t)cos(2m f.1)
1) o)

= T[1 +cos(drnf)) +T[sin(4nf;t)+ sin(0)]

= %I(z) +%1(t)cos(4n:ﬁ_t) + +%Q(z)sin(4nf;z)
Applying this signal to a low pass filter, the output will be:

%I(t)

Extracting Q(t) from S

S(t)=I1(t)cos(2r f.t)+ O(t)sin(2x f.t)
Multiplying both sides by sin(21ft):
S(t)sin(2rf.t) = I(t)cos(2m f.t)sin(2r f.1) + Q(t)sin2(2n'ﬁ,t)
1(1) @)

= T[sin@nf;t)— sin(O)]+T[l —cos(4nf.)]

= lI(l)sin(47rf('t) + lQ(z) - 1Q(l)cos(47tf‘,t)
2 2 2
Applying this signal to a low pass filter, the output will be:
1
EQU)

V] we

Amplifier | |

L

Analog to Digital Converter el

(ADC)

e 12 bit A/D Converter (212 levels)

e 2 volt peak-peak maximum input

e 64 Msamp/second

Sampling Interval: Quantization Levels:

Ar:%:o.()lSéyS Av=%=0.488mV
64 x10° 2 11
Decimation

e Original sampling rate is 64Msamp/sec
e Converts a portion of spectrum 32 MHz wide

e Generally we are interested is a narrower portion of the
spectrum requiring a lower sampling rate

e USB cannot handle that high data rate
e Occurs in the FPGA of the USRP

Downsample [1]
; o Ldivideby 128 ;
32MHz 250KHz 250KHz

fs = 64Msamp/sec fs = 64Msamp/sec fs = 500Ksamp/sec

M 128
500K 12

SDR Receiver with USRP

Daughterboard Motherboard
|

. n

\E - _[to] FPGA
Amplifier o (Decimator,

ADC| | Mux, etc.)

—

usB

Controller

PC I'

!

GNU
Radio
Software

13

USRP -
Motherboard/Daughterboard

GNU Radio Software

e Community-based project started in 19

98

e GNU Radio application consists of sources (inputs), sinks

(outputs) and transform blocks

e Transform blocks: math, filtering,
modulation/demodulation, coding, etc.

e Sources: USRP, audio input, file input, signal generator,

e Sinks: USRP, audio output, file output, FFT, oscilloscope,

e Blocks written in C++

e Python scripts used to connect blocks and form application

Design of a Receiver

YV—{ USRP || GNU Radio Application]] |

e USRP: Set frequency of local oscillator (receive
frequency), gain of amplifier, decimation factor

e GNU Radio application: use Python to specify
and connect blocks that perform demodulation
and decoding

Example: 400 - 500 MHz NBFM 3
Receiver

e Problem: Receive an audio signal (up to 4
KHz) transmitted at 446 MHz using
narrowband FM (NBFM) with a 16 KHz
transmission bandwidth

YVT——{ USRP |——| GNU Radio Application h-m

16 KHz
f (MHz) £
hoo 446 500

4KHz

Design Procedure

1. Plan the block diagram of system
components

2. Determine block parameters
3. Determine decimation rates

4. Write Python script to specify the blocks
and connect them together

NBFM Receiver: Block H
Diagram/Parameters

16 KHz 16 KHz 16 KHz
FM
f(MH: /) f(KH:
400 436 500 " 32 32 QM) EEEIH (KHz)
J J USRP: PC \
G i 2 F
Daughterboard ADC FPGA

€ H . actor = 7 H, Demodulat

utczuﬁ MHz } 64 Msamp/sec [| Dee. factor = oft 7 Demodulator }

ox i Audio
LT LT o U

Determining the Decimation | i
Factors

16 KHz i
— |- FPGA Channel Filter FM udio
Dec. factor = cutoff = 8KHz [—* Demodulator] ‘
Dec. factor = Dec. factor = £ (KHz)
D, D3 414

U‘
32 32 f (MHz)|

Total Decimation factor = 8000 = D,D,D4

64Msamp/sec 8Ksamp/sec

FPGA Decimation Factor, D,

16 KHz »
il el FPGA Channel Filter FM udio
—1 Dec. factor= [—] cutoff = 8KHz [Demodulator |
D, Dec. factor = Dec. factor = i (KH2)
D, E

32 32 f(MHz) D3

Total Decimation factor = 8000 = D,D,D4
*Maximize the decimation in FPGA

*Maximum decimation factor in FPGA = 256
Select D, = 250 (factor of 8000)

*Output sample rate = 64Ms/s / 250 = 256Ks/s

Channel Filter Specification

16 KHz

i
il B FPGA Channel Filter ™| | Audio
D o Demodulator
0 c. fa Dec. factor = zaey £ (KHz)
32 32 T(Milz) N B -
64Ms/s 16 KHz
o Channel Filter
H (dB)
et f(KHo) :
256Ks/s o

I el
f (KHz)
16 9 89 16

*Maximum frequency = 16 KHz — Reduce sample rate to 32 Ks/s
+256Ks/s /| 32Ks/s — D, =8

FM Demodulator

16 KHz
FM
f(KHz
des[s 15 HY
32Ksls
16 KHz d
FPGA Channel Filter M Audio
—0 Dec. factor = "] utoff = 8KHz [—4 Demodulator
250 Dec. factor = § Dec. facto)
32 T (MHz Dy E
64Msls 16 KHz
EECR I E
256Ks/s

*Maximum frequency = 4 KHz — Reduce sample rate to 8 Ks/s
*32Ks/s | 8Ks/ls — Dy =4
*FM Demodulator block “extracts” audio signal from FM waveform by

operating on | and Q

Complete Application Design

16 KHz
M
f(KHz)
des[s 15 HY
\321(;/5
FPGA Channel Filter ™ Audio
" Dec. factor= || cutoff = 8KHz [~ Demodulator [—*|
250 Dec. factor=8 | | Dec. factor =4 Tt (KH)
32 32 1 (MH2)
8Ksls
64Ms/s 16 KHy

38 138 f (KHz)
256Ks/s

Total decimation ratio = 250*8*4 = 8000

«Problem: The audio card requires an input sample rate = 44.1 Ks/s

*Solution: Use a Resampler to increase the output sample rate 24

Final Application Design

64Ms/s 256Ks/s 32Ksls J 32Ks/s
FPGA Channel Filter FM Resampler
— Dec. factor = [cutoff = 8KHz 1 Demodulator [= multby3 = 48Ks/s
250 Dec. factor =8 Dec. factor = 1 divby 2

«Audio Card requires a sample rate = 44.1 Ks/sec. Use 48 Ks/sec.
*Modify FM Demodulator to have a decimation factor of 1 (no change)

+Increase the sample rate to 48 Ks/sec with Resampler (x 3/2)

Implementing the Design

e Create a Python script to specify and
connect the various GNU radio blocks

e Blocks are already written in C++

e USRP parameters are set within Python
script

e # indicates that the line is a comment
e Refer to nbfm.py script

Setting the USRP Parameters

e The following code sets the USRP
Parameters:

#Create USRP data source
u = usrp.source_c{decim_rate=250)

#Tell USRP what daughter board to use and displays name
#(0,0) means side A, 1st channel - picks daughterboard
rx_subdev_spec = (8,8)
u.set_nux{usrp.determine_rx_mux_value{u,rx_subdev_spec))
subdev = usrp.selected_subdev{u,rx_subdev_spec)

print "Using doughterboard",subdev.name()

#Tune it to supplied frequency
u.tune{@,subdev ,frequency)

Channel Filter Design &

e The following code specifies the channel
filter and computes the coefficients

H (dB)

0

-0.1
#create the channel filter coefficients 160 f (KHz)
chan_taps = optfir.low_pass(-6 -9-8 89 16

1.8, #ilter gain

256e3, #Sample Rate

8068, #one sided modulation BY {edge of passband)
9068, #one sided channel BYW (edge of stopband)
8.1, #Passband ripple

68} #Stopband Attenuation

Channel Filter Creation

e The following code creates the channel filter
using the coefficients computed:

#creates the channel filter with the coef found above
chan = gr.freq_xlating_fir_filter_ccf(
8, #ecimation rate
chan_taps, #coefficients
a.a, #0ffset frequency - could be used to shift
256e3) #incoming sanple rate

FM Demodulator

e The following code creates the FM demodulator.

e The demodulator block also includes a low pass
filter.

#create the FM demodulator

demod = fm_demod_cf {self,
32e3, #Sample Rate at input
1, #Decimation
50008 ,#Deviation
3008, #edge of audio passband
4000) #edge of audio stopband

10

Resampler

e The following code creates the resampler.

e The resampler decimates and/or interpolates the
data to adjust the sample rate.

#insert resampler to increase sample rate of 32K to 48K
mult by 3 and divide by 2
rsamp = blks.rational_resanpler_fff{self,3,2)

Connecting the Blocks

e The following code connects the blocks:

#connect the usrp output to the channel filter input
self .connect (u,chan)

#connect channel filter to demodulator
self .connect (chan,demod)

spkr = audio.sink{48000)
#connect demod to resampler and resampler to speaker

self .connect (demod ,rsanp)
self .connect(rsamp,spkr)

Or, a single connect statement:

self .connect (u,chan,demod ,rsamp ,spkr)

Final Thoughts

e Demonstration

e Storing/creating data

e Transmitters

e Installing GNU radio

e Questions

e Where do we go from here?

11

